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Abstract

The definition of equivalent neutral wind and the rationale for using it as the

geophysical product of a spaceborne scatterometer are reviewed. The differences between
equivalent neutral wind and actual wind, which me caused by atmospheric density
stratification, are demonstrated with measurements at selected locations. A method of

computing this parameter from ship and buoy measurements is described and some
common fallacies in accounting for the effects of atmospheric stratification on wind shear
are discussed. The computer code for the model to derive equivalent neutral wind is

provided in the Appendix.
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1. Introduction

The rationale for selecting the equivalent neutral winds (u°) at a reference height to
be the geophysical product of a spaceborne scatterometer lies in the physics of
scatterometry and turbulence transport in the atmosphere. Spaceborne scatterometers send
microwave pulses to the ocean surface and measure the backscatter power. The backscatter
power is modified by surface capillary waves, which are believed to be in equilibrium with
the wind stress ('0, or momentum flux, at the ocean surface. The momentum flux is driven

by turbulence generated by wind shear and buoyancy. Buoyancy is the result of vertical
density stratification. The relation between "t and the wind shear, therefore, depends on the
density stratification, or stability, of the atmosphere. The wind speed at the reference level
may be different when the same backscatter power is measured, depending on vertical
gradients of temperature and humidity. The theoretical parameter u, is uniquely related to
the scatterometer measurements, but the actual wind (u) is not [Liu, 1981]. Empirical
relations, called model functions, have been used to relate scatterometer measurements to

the geophysical product u,. Although the stability effect on wind shear is generally small in
open ocean, it should be properly removed from wind measurements used to develop the
empirical model function for the scatterometer. Otherwise, systematic errors that depend
on atmospheric stability will be introduced in the geophysical product of the scatterometer
[e.g., Liu and Large, 1981; Liu, 1984].

This report is organized as follows: the method to compute u, from u is described in
Section 2, and examples of the difference between u, and u are illustrated in Section 3. A
few common fallacies in accounting for the stability effects are described in Section 4.
Finally, the computer code for computing un from u is listed in the Appendix.

2. The Surface Layer Similarity Functions

The Seasat Project adopted the model by Liu et al. [1979], hereafter referred to as

LKB, to compute u, from measurements at buoys and ships for the validation of the
scatterometer model function. Since then, LKB has been used in other evaluations of wind

measurements [e.g., Freilich, 1986; Wilkerson and Earle, 1990]. The method is based on
the similarity functions (non-dimensional flux-profile relations) in the atmospheric surface
layer

u - u., = 2.5(1n z _ _r )
U, Z,,

T-
- 2.2(lnz-

7". Zr

q-q_ = 2.2(InZ-_q)
q. Zq

where u, T, and q are the wind speed, potential temperature, and specific humidity at a
height of z. The subscript s denotes that the value of the attached variable is evaluated at
the air-sea interface. By definition, u., T., and q. are functions of the x, the sensible heat

flux, and the latent heat flux. The lower boundary parameters, z o, zx, and Zq, depend on x
and fluid properties; Vo, V_, and V_ are functions of the stability parameter z/L, where L is
the Monin-Obukhov length. The stability parameter can be expressed in terms of the three
fluxes. If measurements of u, T, and q at known levels in the surface layer, as well as the
sea-surface temperature, T_, are available, these three simultaneous, implicit equations can



be solved for the three fluxes, with u, assumed to be zero, and qs as the saturation humidity
at Ts. The atmospheric surface layer is approximately 50 m thick just above the ocean, and

a more detailed description of this layer is given in Section 4. At neutral stability, _¢, is
zero. With the solutions of u. and zo obtained from this model, u, at reference height h can
be computed as

u. = 2.5 In (h/zo).

LKB, as a method for computing ocean-surface turbulence fluxes, has been
extensively tested. Most bulk coefficients of turbulence fluxes have been derived under

moderate winds [e.g., Smith, 1980; Anderson and Smith, 1981; Large and Pond, 1981;
1982] and for neutral stability; the bulk coefficient results of LKB are comparable under
these conditions. The characteristics of LKB in the low-wind and high-wind regimes were
controversial when the model was first published, but they have been strongly validated
recently in the TOGA (Tropical Ocean and Global Atmosphere) COARE (Coupled Ocean
Atmosphere Response Experiment) and the HEXOS (Humidity Exchanges Over the Sea)
Experiment [e.g., Bradley et al., 1991; Katsaros and DeCosmo, 1993]. Its wide span of
applications include the production of a flux atlas [e.g., Esbensen and Kushnir, 1981], the
evaluation of the hydrologic cycle [e.g., Cadet and Greco, 1987; Wu and Lau, 1995], and
the modeling of the upper ocean heat budget [e.g., Moisan and Niiler, 1996].

3. The Differences Between Equivalent Neutral Wind and Actual Wind

Given a wind speed of 2 m/s, for example, u,, at a reference height of 10 m, can
be 50% lower than u under stable conditions, or it can be 20% higher than u under unstable
conditions (Fig. 1). At 19.5 m, the reference height of the Seasat scatterometer, the

differences are greater, as illustrated by Liu [1981]. The comparison of u and u, from the
Tropical Atmosphere and Ocean (TAO) moored buoys in the equatorial Pacific is shown in

Fig. 2. Owing to strong moisture-induced instability, the atmosphere over the warm pool,
at 165°E on the equator, is always unstable. Over a period of more than eight years (July
1986 to March 1995), the daily measurements at the moorings show that u,, _s consistently
higher than u at a reference height of 4 m (anemometer height) by slightly more than 10%
for wind speeds between 4 and 10 m/s. The difference increases to over 30% as the wind

speed decreases. Over the cold tongue, at 110°W on the equator, as shown by over 14
years (1980-1994)of daily data, the atmosphere is mostly unstable when u° is higher than
u by 10 to 20%. However, there are occasions when the temperature stability (air
temperature is higher than ocean temperature) is strong enough to counter moisture-induced
instability and u,, is actually lower than u. The percentage difference also increases with the
magnitude of the stability parameter z/L under both stable and unstable conditions. Two
years of data (1992-1994) from National Data Buoy Center (NDBC) buoys are shown in
Fig. 3. The anemometer heights (reference heights) are different at different locations
(10 m at 26°N, 90°W and 5 m at 32.6°N and 78.7°W) and different from those at the TAO

moorings, but the characteristics exhibited by the plots are similar to those shown in Fig. 2.

4. Common Fallacies

4a. Assuming neutral stability

For moderate and strong winds over open ocean, when shear production dominates
over buoyancy production of turbulence, the effect of atmospheric stratification is usually
small, but the exactly neutral condition in the atmosphere is rare. For an oceanographer
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who wants to derive stress from wind, an assumption of neutral atmospheric stability may
be tolerable on the notion that there may be larger uncertainties in wind measurement and

bulk parameterization than the errors caused by the assumption. However, producing a
validation standard for scatterometer data, from buoy or ship measurements at various

heights, requires a more vigorous effort to account for the stratification than deriving stress
to avoid erroneously discovering stability-dependent errors in the model function and
making wrong corrections. Otherwise, any validation results could be challenged.

4b. Neglecting moisture-induced instability

Historically, the areas of turbulence transport studies have largely been over land
and mid-latitude ocean, where buoyancy is mainly generated by temperature fluctuation; the
effect of humidity variation is usually neglected in these studies. In the warm tropical
ocean, because of the rapid increase of saturation humidity with temperature (following the
Clausius-Clapeyron function), humidity fluctuations can have significant effects on
atmospheric stability. An analysis was performed by Liu [1990] that shows that the effect
of moisture-induced buoyancy becomes larger than that of temperature-induced buoyancy
when the ocean temperature exceeds 20°C (assuming 7 m/s winds, 80% relative humidity,
and sea-air temperature of I°C). Even at 15°C, the moisture-induced instability is obvious

in Fig. i; the atmosphere is unstable when there is no difference between air and sea
temperature. Moisture-induced instability should be included in the computation of
equivalent neutral wind, and LKB provides such an option.

4c. Misusing a planetary boundary layer model

Ship and buoy measurements are made in the atmospheric surface layer, which is
approximately 50 m thick and forms the lower part of the planetary boundary layer (PBL).
The PBL is typically 1 km thick. The extent of the surface layer is defined so that the flux
divergence is negligible and so that the vertical fluxes are constant. In this layer, the effect
of the Coriolis force can be neglected so that stress and wind are in the same direction; the
effect of baroclinicity can be neglected so that there is no wind shear due to horizontal
density gradients; also, there is no heat source/sink due to clouds and no secondary flow.
While a PBL model [e.g., Brown and Liu, 1982] is useful in deriving large-scale surface
winds from pressure gradients (or from geostrophic winds above the PBL), using a
planetary boundary layer model to correct buoy/ship winds for atmospheric stability is
clearly overkill. Furthermore, applying a model also introduces unnecessarily the
uncertainties resulting from our ignorance of the effects of horizontal inhomogeneity, non-

stationarity, clouds, baroclinicity and other factors on the similarity relations.

5. The LKB Computer Code

The LKB FORTRAN computer code listed in the Appendix can be downloaded
from the Home Page of the Air-Sea Interaction and Climate Team at JPL (http://airsea-

www.jpl.nasa.gov). The code is similar to that listed in Liu and Blanc [1984], but has
slight modifications. In Liu and Blanc [1984], three choices are given for the relation
between zo and u., but in the new version, only the relation by Smith [1988] is included.
This relation uses the smooth flow formula, which is the same as that used by Kondo

[1975], and merges it with the rough flow formula by Charnock [1955]; both formulae
were discussed by LKB. Smoothed versions of the z-r and Zq functions are also used.
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6. Conclusion

While most of the users of scatterometer data are acquainted with the term
"equivalent neutral wind," it is possible that many of them do not have a clear

understanding of the significance and rationale of this parameter and that very few of them
have the right tool to compute it. This report is intended to alleviate this problem. The
general methodology of computing equivalent neutral wind from ship and buoy
measurements is described, and a specific computer technique, LKB, is provided. The
authors feel that while LKB is not the simplest method, it is the most comprehensive; it is
applicable to the widest range of conditions and has been vigorously tested. The authors
hope that this report will be in time to benefit the geophysical validation effort of the NASA
Scatterometer, which is scheduled to be launched in August 1996.
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Fig. 1 The ratio of equivalent neutral wind to the actual wind at 10 m for various air-sea temperature

differences and wind speeds, as computed from the model of Liu et al. [ 1979]. A constant relative

humidity of 0.7 is assumed, and the sea surface temperature is set at 15°C.
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Appendix

The LKB Computer Code

(originally developed by W. Timothy Liu
in the 1970s at the University of Washington)

A-1



PROGRAM FLUX

C APPLICATION OF LKB BULK PARAMETERIZATION COMPUTER CODE.

C The bulk parameterization technique of Liu et al. (J. Atmos.

C Sci., 36, 1722-1735, 1979) essentially solves three

C simultaneous equations representing the non-dimensional wind,

C temperature, and humidity profiles by iterations. This is

C achieved by calling Subroutine Asl 1, which in turn calls

C Subroutines: Humlow, Lkbl, Psi, Zeta. The input and

C output parameters (through Common statement) are listed in

C the comment statements of Asl 1.

C Please note that

C [ 1]Theoretically, the validity of the Liu et al. model depends on

C the validity of the similarity theory. For example, when

C turbulence is suppressed by stable density stratification

C (bulk Richardson number exceeds a critical value), the

C results may not be valid and the program may fail to

C converge.

C [2]In case not all the input parameters are available,

C substituting with estimated values is better than leaving the

C missing values as zero. For example, if specific humidity is

C not available, assume a 75% or 80% relative humidity.

C [3]Subroutine Humlow can be used to derive surface specific

C humidity Q from three types of observations, and the

C following are examples

C (1) If dew point temperature (TD) is available,

C Call Humlow (TD,TD,P,Q)

C (2)If air temperature (T) and relative humidity (R) are

C available

C Call Humiow (T,T,P,QA)

C Q=QA*R

C (3)If wet-bulb temperature (TW) is available

C Call Humlow (T,TW,P,Q)

C P is air pressure in mb, which can be taken as 1013 if no

C observation is available

REAL LH

COMMON/PIN/U,T,Q,TS,ZU,ZT,ZQ,P
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COMMON/POUT/USR,TSR,QSR,ZO,ZL,RR,RT,RQ

P=1013.!SURFACEPRESSURE
CP=1.0E+03!ISOBARICSPECIFICHEAT
RHO=1.2 !SURFACEAIR DENSITY
LH=2.5E+06 !LATENT HEAT OFVAPORIZATION

C EXAMPLE:

PRINT *,' ENTERWIND,TEMP,ANDHUMIDITY SENSORHEIGHTS'
READ(5,*)ZU,ZT,ZQ
PRINT *,' ENTERWIND,SST,TEMP,RELHUMIDITY'
READ(5,*)U,TS,T,R

CALL HUMLOW(T,T,P,QA)
Q=QA*R

print*,'q=' ,q

CALL ASL1(IER)

print*,'tsr,qsr,usr',tsr,qsr,usr

C
C
C

IF(IER .LT. 0)GOTO 90

WRITE STABILITY AND ROUGHNESSLENGTH

WRITE(6,1)ZL
1FORMAT(' STABILITY PARAMETER=',E12.2)
WRITE(6,2)ZO

2 FORMAT(' ROUGHNESSLENGTH=',E12.2)
C
CCOMPUTESURFACESTRESSTAU, SENSIBLEHEAT FLUX H, AND LATENT HEAT FLUX
E
C

TAU=RHO*USR**2
H=-CP*RHO*USR*TSR
E=-LH*RHO*USR*QSR

WRITE(6,3)TAU

3 FORMAT(' SURFACE STRESS=',FI0.3,' N/M**2')

WRITE(6,4)H

4 FORMAT(' SURFACE HEAT FLUX=',F10.3,' W/M**2')
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WRITE(6,5)E
5 FORMAT(' SURFACELATENT HEAT FLUX=',F10.3,' W/M**2')

C

C COMPUTEEQUIVALENT NEUTRAL WIND AT 19.5MHEIGHT
C

U20=2.5*USR*ALOG(19.5/ZO)
WRITE(6,6)U20

6 FORMAT(' EQUIVALENT NEUTRAL WIND AT 19.5M='F10.3)
C
C COMPUTETRANSFERCOEFFICIENT
C

CALL HUMLOW(TS,TS,P,QS)
CD=(USR/U)**2
CH=USR*TSR/(U*(T-TS))
CE=USR*QSR/(U*(Q-QS))

WRITE(6,7)CD,CH,CE
7 FORMAT(' THE COEFS(CD,CH,CE)=',3(1PE12.2))
GOTO 50

90WR1TE(6,8)IER
8 FORMAT(' FAILS TO CONVERGE',I5)

50 CONTINUE

END

SUBROUTINEASL1(IER)
C

C TO EVALUATE SURFACEFLUXES,SURFACEROUGHNESS,AND STABILITY OF
C THE ATMOSPHERICSURFACELAYER FROMBULK PARAMETERSACCORDINGTO
C LIU ET AL. (79) JAS36 1722-1735
CWRITTEN BY TIM LIU ON 5/8/79,FIRSTREVISION8/31/94
C
C INPUT:
C U WIND SPEEDIN M/S
CT TEMPERATUREIN DEG C

C QSPECIFICHUMIDITY DIMENSIONLESS
C TS SURFACETEMPERATUREIN DEGC

C ZU HEIGHT OFWIND SENSOR(M)
C ZT HEIGHT OFTEMPERATURESENSOR(M)
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C ZQ HEIGHT OF HUMIDITY SENSOR (M)

C PO SURFACE PRESSURE IN MB (DEFAULT TO 1013.25)

C

C DELTA = RELATIVE TOLERANCE FOR CONVERGENCE

C

C OUTPUT:

C USR,TSR,QSR SCALING QUANTITIES FOR U,T,Q

C ZO,ZL ROUGHNESS AND STABILITY PARAMETERS

C RR,RT,RQ ROUGHNESS REYNOLD NUMBERS FOR U,T,Q

C

C DISCARD OUTPUT IF IER GREATER THAN O

C IER= 1 FAIL TO CONVERGE

C

COMMON/PIN/U,T,Q,TS,ZU,ZT,ZQ,PO

COMMON/POUT/USR,TSR,QSR,ZO,ZL,RR,RT,RQ

IER=0

VISA=. 15E-4

g=9.8

delta=0.0001

ZL=0.

US=0.

1F(PO .EQ. 0.)PO=1013.25

CALL HUMLOW(TS,TS,PO,QS)

print*,'asl qs=',qs

DU=U-US

DT=T-TS

DQ=Q-QS

TA=273.15+T

USR=.04*DU

N=0

30 CONTINUE

zo=O. 1 l*visa/usr + 0.011 *usr*usr/g

PUZ=PS I( 1,ZL)

USR=DU*0.4/(ALOG(ZU/ZO)-PUZ)

RR=ZO*USR/VISA

A-5



CALL LKB 1(RR,RT,1)
CALL LKB I(RR,RQ,2)

ZTL=ZL*ZT/ZU

ZQL=ZL*ZQ/ZU
PTZ=PSI(2,ZTL)
PQZ=PSI(2,ZQL)

ZTSR=ZT*USR/VISA

ZQSR=ZQ*USR/VISA

S=2.2*(ALOG(ZTSR/RT)-PTZ)
D=2.2"(ALOG(ZQSR/RQ)-PQZ)

TSR=DT/S

QSR=DQ/D

CALL ZETA(T,Q,USR,TSR,QSR,ZU,ZLN)
TEST=ABS((ZL-ZLN)/(ZL+ 1.E-8))
IF(TEST.LT.delta)GOTO 39
N=N+I

IF(N.GT.50)GOTO 95
ZL=ZLN
GOTO 30

39CONTINUE
GOTO 99

95 IER=1
WRITE(6,1)N

1FORMAT(1X,24HASLFAILS TO CONVERGE,I5)
99RETURN

END

SUBROUTINEHUMLOW(T,TW,P,Q)
C
C TO EVALUATE SPECIFICHUMIDITY QFROM DRY AND WET BULB TEMP
C T AND TW IN DEG CAND PRESSUREPIN MB

CQ IS THE SATURATION SPECIFICHUMIDITY AT T IF TW=T
CWRITTEN BY TIM LIU ON 5/3/79
C

DIMENSION A(6)
DATA A/4.436519E-1,1.428946E-2,2.650649E-4,3.031240E-6,
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& 2.034081E-8,6.136821E-11/
X=0.

DO 1001=1,6
J=7-I

X=(X+A(J))*TW
100CONTINUE

ES=6.107800+X
Q=0.622*ES/(P-ES)-4.045E-04*(T-TW)
RETURN
END

C

subroutinelkb1(rr,rt,iflag)

C TO DETERMINE THE LOWER BOUNDARY VALUE RT OFTHE LOGARITHMIC

C PROFILESOF TEMPERATURE (IFLAG= I) OR HUMIDITY (IFLAG=2)

C IN THE ATMOSPHERE FROM ROUGHNESS REYNOLD NUMBER RR BETWEEN

C 0 AND 1000. OUT OF RANGE RR INDICATED BY RT=-999.

C BASED ON LIU ET AL. (1979) JAS 36 1722-1723

C WRITTEN BY WENDY TANG 8/31/94

C

dimension a(9,2)

data a/1.78372207e-02,-9.42581262e-02,-6.86854874e-01,

$

$

$

$

$

1.23243995e-01,9.60776184e-02,-3.83157945e-02,

-3.61932655e-03,2.95832855e-03,-3.08498119e-04,

3.19474376e-01,-8.14176320e-02,-5.96190694e-01,

1.06061761e-01,8.06995259e-02,-3.26535114e-02,

-2.90657805e-03,2.47245084e-03,-2.58972350e-04/

xx--alog(rr)

xi=l.0

yy=a( 1,iflag)

do i=2,9

xi=xi*xx

yy=yy+a(i,iflag)*xi

enddo

rt=exp(yy)

return

end

FUNCTION PSI(ID,ZL)

A-7



C

C TO EVALUATE THE STABILITY FUNCTION PSIFORWIND SPEED(IFLAG= 1)
C ORFORTEMPERATUREAND HUMIDITY PROFILESFROM STABILITY PARAMETERZL
C SEELIU ET AL. (1979)JAS36 1722-1723FORDETAILS
C WRITTEN BY TIM LIU ON 9/12/71,REVISEDFORVAX ON 2/10/82
C

IF(ZL) 10,20,30
10CHI=(1.-16.*ZL)**0.25

IF(ID.EQ.1)GOTO 11
PSI=2.*ALOG((I.+CHI*CHI)/2.)
GO TO 99

11PSI=2.*ALOG((1.+CHI)/2.)+ALOG((1.+CHI*CHI)/2.)-2.*ATAN(CHI)
& +2.*ATAN( 1.)
GOTO 99

20PSI=0.
GOTO 99

30PSI=-6.*ALOG(1.+ZL)
99RETURN

END

SUBROUTINEZETA(T,Q,USR,TSR,QSR,Z,ZL)
C

C TO EVALUATE OBUKHOV'S STABILITY PARAMETERZ/L FROM AVERAGE
C TEMPT IN DEG C, AVERAGE HUMIDITY QIN GM/GM, HEIGHTZ IN M,
C AND FRICTIONAL VEL.,TEMP.,HUM. IN MKS UNITS
C SEELIU ET AL. (1979)JAS36 1722-1723FORDETAILS
CWRITTEN BY TIM LIU ON 10/1/77,REVISEDFORVAX ON 2/10/82
C

VON=0.4
G=9.81
TA=273.16+T

TV=TA*(1.+0.61*Q)
TVSR=TSR*(1.+0.61*Q)+0.61*TA*QSR
IF(TVSR.EQ.0.)GOTO 10
OB=TV*USR*USR/(G*VON*TVSR)
ZL=Z/OB
GOTO 99

10ZL=0.
99RETURN

END
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